kimamanikakuの日記

自分が面白いと感じたことを記事にしています。

ベクトル解析公式 証明

\nabla \times \left( \nabla \times A\right)

=\nabla(\nabla \cdot A)-\Delta A

 

まず、

 \nabla A=\left(\dfrac{\partial}{\partial x}\boldsymbol{i}+\dfrac{\partial}{\partial y}\boldsymbol{j} +\dfrac{\partial}{\partial z}\boldsymbol{k}\right)\times A

 

=\boldsymbol{i}\times \dfrac{\partial A}{\partial x}+\boldsymbol{j}\times \dfrac{\partial A}{\partial y}+\boldsymbol{k}\times \dfrac{\partial A}{\partial z}

 

したがって、

\boldsymbol{A} \times \left(\boldsymbol{B}\times \boldsymbol{C}\right)

=\left(\boldsymbol{A}\cdot\boldsymbol{B}\right)\boldsymbol{C}-\left(\boldsymbol{A}\cdot\boldsymbol{C}\right)\boldsymbol{B}

を用いると、

 

\nabla\times \left(\nabla \times \boldsymbol{A}\right)

 

=\nabla\times\left(\boldsymbol{i}\times \dfrac{\partial A}{\partial x}+\boldsymbol{j}\times \dfrac{\partial \boldsymbol{A}}{\partial y}+\boldsymbol{k}\times\dfrac{\partial\boldsymbol{A} }{\partial z}\right)

=\left(\nabla\times\boldsymbol{i}\times \dfrac{\partial \boldsymbol{A}}{\partial x}\right)+\left(\nabla\times \boldsymbol{j}\times \dfrac{\partial \boldsymbol{A}}{\partial y}\right)+\left(\nabla\times\boldsymbol{k}\times\dfrac{\partial \boldsymbol{A}}{\partial z}\right)

 

=\left(\nabla \cdot \dfrac{\partial \boldsymbol{A}}{\partial x}\right)\boldsymbol{i}-\left(\nabla\cdot\boldsymbol{i}\right)\dfrac{\partial\boldsymbol{A}}{\partial x}+\left(\nabla \cdot \dfrac{\partial \boldsymbol{A}}{\partial y}\right)\boldsymbol{j}-\left(\nabla\cdot\boldsymbol{j}\right)\dfrac{\partial \boldsymbol{A}}{\partial y}+\left(\nabla \cdot \dfrac{\partial \boldsymbol{A}}{\partial z}\right)\boldsymbol{k}-\left(\nabla\cdot\boldsymbol{k}\right)\dfrac{\partial \boldsymbol{A}}{\partial z}

 

=\dfrac{\partial}{\partial x}\left(\nabla\cdot\boldsymbol{A}\right)\boldsymbol{i}+\dfrac{\partial}{\partial y}\left(\nabla\cdot\boldsymbol{A}\right)\boldsymbol{j}+\dfrac{\partial}{\partial z}\left(\nabla\cdot\boldsymbol{A}\right)\boldsymbol{k}-\dfrac{\partial^2\boldsymbol{A}}{\partial x^2}-\dfrac{\partial^2\boldsymbol{A}}{\partial y^2}-\dfrac{\partial^2\boldsymbol{A}}{\partial z^2}

 

=\nabla\left(\nabla\cdot\boldsymbol{A}\right)-\nabla^2\boldsymbol{A}

より簡単に書いてみる。基底ベクトルを\boldsymbol{e}_i (i=1,2,3)と表せば

=\nabla \times \left( \nabla \times A\right)

=\nabla\times \left(\boldsymbol{e}_i \times \dfrac{\partial \boldsymbol{A}}{\partial x^i}\right)

\left(\nabla\cdot\dfrac{\partial \boldsymbol{A}}{\partial x^i}\right)\boldsymbol{e}_i -\left(\nabla\cdot\boldsymbol{e}_i \right)\dfrac{\partial \boldsymbol{A}}{\partial x^i}

=\nabla\left(\nabla\cdot\boldsymbol{A}\right)-\nabla^2\boldsymbol{A}

 

 

つぎ。

 

(2)\nabla\times\left(\boldsymbol{A}\times\boldsymbol{B}\right)

=\dfrac{\partial}{\partial x^i}\Bigl\{\boldsymbol{e}_i \times\left(\boldsymbol{A}\times\boldsymbol{B}\right)\Bigr\}

 \dfrac{\partial}{\partial x^i}\Bigl\{ \left(\boldsymbol{e}_i \cdot \boldsymbol{B}\right)\boldsymbol{A}-\left(\boldsymbol{e}_i \cdot \boldsymbol{A}\right)\boldsymbol{B}\Bigr\}

=\dfrac{\partial}{\partial x^i}\left(B_i \boldsymbol{A}-A_i \boldsymbol{B}\right)

=\dfrac{\partial B_i}{\partial x^i}\boldsymbol{A}+B_i \dfrac{\partial \boldsymbol{A}}{\partial x^i}-\dfrac{\partial A_i}{\partial x^i}\boldsymbol{B}-A_i \dfrac{\partial \boldsymbol{B}}{\partial x^i}

=\left(\nabla\cdot\boldsymbol{B}\right)\boldsymbol{A}+\left(\boldsymbol{B}\cdot\nabla\right)\boldsymbol{A}-\left(\nabla\cdot\boldsymbol{A}\right)\boldsymbol{B}-\left(\boldsymbol{A}\cdot\nabla\right)\boldsymbol{B}

 

3つ目

\nabla\times\left(\nabla Φ\right)=\boldsymbol{0}

 

 
\nabla\times\left(\nabla Φ\right)
 
=\left(\dfrac{\partial}{\partial x^i}\boldsymbol{e}_i \right)\times\left(\dfrac{\partial Φ}{\partial x^j}\boldsymbol{e}_j \right)
 
=\dfrac{\partial^2 Φ}{\partial x^i \partial x^j}\boldsymbol{e}_i \times \boldsymbol{e}_j
 
= \dfrac{1}{2}\left(\dfrac{\partial^2 Φ}{\partial x^{i}\partial x^{j}}\boldsymbol{e}_{i} \times \boldsymbol{e}_{j} +\dfrac{\partial^2 Φ}{\partial x^{j}\partial x^{i}} \boldsymbol{e}_{j} \times \boldsymbol{e}_{i} \right)
 
\dfrac{1}{2}\dfrac{\partial^2 Φ}{\partial x^{i}\partial x^{j}}(\boldsymbol{e}_i\times \boldsymbol{e}_j -\boldsymbol{e}_i\times \boldsymbol{e}_j)
 
=\boldsymbol{0}
 
 
 4つ目
\nabla\cdot\left(\boldsymbol{A}\times\boldsymbol{B}\right)
 
=\dfrac{\partial}{\partial x^{i}}\Bigl\{\boldsymbol{e}_i \cdot\left(\boldsymbol{A}\times \boldsymbol{B}\right)\Bigr\}
 
\boldsymbol{e}_i \cdot \left(\dfrac{\partial \boldsymbol{A}}{\partial x^i}\times\boldsymbol{B} \right)  +\boldsymbol{e}_i \cdot \left(\dfrac{\partial \boldsymbol{B}}{\partial x^i}\times\boldsymbol{A} \right) 
 
=\left(\nabla\times \boldsymbol{A}\right)\cdot\boldsymbol{B}-\left(\nabla\times \boldsymbol{B}\right)\cdot\boldsymbol{A}